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a b s t r a c t

We present and discuss the theory and phenomenology of the leading twist theory
of nuclear shadowing which is based on the combination of the generalization of the
Gribov–Glauber theory, QCD factorization theorems, and the HERA QCD analysis of
diffraction in lepton–proton deep inelastic scattering (DIS). We apply this technique for
the analysis of a wide range of hard processes with nuclei – inclusive DIS on deuterons,
medium-range and heavy nuclei, coherent and incoherent diffractive DIS with nuclei, and
hard diffraction in proton–nucleus scattering – and make predictions for the effect of
nuclear shadowing in the corresponding sea quark and gluon parton distributions. We also
analyze the role of the leading twist nuclear shadowing in generalized parton distributions
in nuclei and in certain characteristics of final states in nuclear DIS. We discuss the limits
of applicability of the leading twist approximation for small x scattering off nuclei and the
onset of the black disk regime andmethods of detecting it. It will be possible to checkmany
of our predictions in the near future in the studies of the ultraperipheral collisions at the
Large Hadron Collider (LHC). Further checks will be possible in pA collisions at the LHC and
forward hadron production at the Relativistic Heavy Ion Collider (RHIC). Detailed tests will
be possible at an Electron–Ion Collider (EIC) in the USA and at the Large Hadron–Electron
Collider (LHeC) at CERN.
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Outline

Brief historical Introduction 

Theory of leading twist (DGLAP) nuclear shadowing

Signals for onset of black disk regime

Predictions for nuclear  pdfs & diffractive pdfs, other final states

Best Signal for onset of black disk regime
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Nuclear shadowing in DIS - is this obvious?

h p n➙ ⇒ σh2H<σhp+σhn

σe2H (x,Q2) <σep(x,Q2)+σen (x,Q2) in DIS???

Glauber model: interaction of the projectile with nucleons via potential

The diagrams  consider by Glauber in QM treatment of hA scattering
 are exactly zero at Eh >> mh (Mandelstam & Gribov proof of the cancelation of AFS diagrams). 

π π π

A A

Physics: no time for pion to go back to pion during a short time between the interactions.
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 Key observations of sixties (Gribov)  relevant for description of  nuclear shadowing in DIS

Though the diagrams  consider by Glauber are exactly 
zero at Eh >> mh , the answer for double scattering

✔ Nuclear shadowing in high energy  hadron - nucleus scattering

contribution is called the impulse or Born approximation. The right graph corresponds to
the simultaneous interaction with both nucleons of the target and leads to a small negative
contribution to the total pion-deuteron cross section, which is called the nuclear shadowing
correction. Below we consider each graph in detail, assuming that all involved particles

shadowing correctionimpulse approximation

N
N

N

N

DDDD

ππ
ππ

Fig. 2. Feynman graphs for pion-deuteron scattering.

and the deuteron are spinless and the proton and the neutron are indistinguishable.

The contribution of the impulse approximation to the pion-deuteron scattering amplitude,
FN(q), is

FN(q) = i
∫ d4k
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where Γ is the D → NN vertex; fN is the pion-nucleon scattering amplitude; m is the
nucleons mass; q is the momentum transfer; p1 is the momentum of the initial deuteron.
The momentum flow used in Eq. (4) is depicted in Fig. 3.
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Fig. 3. The momentum flow in the left graph in Fig. 2 and in Eq. (4).
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is expressed through the diffractive cross section (elastic + inelastic) at t~0. For triple,... rescattering 
the answer is related to the low t diffraction but cannot be obtained in a model independent way

Natural explanation in the Gribov space-time picture of high energy scattering - (photon) hadron fluctuates into 
different configurations well before the collisions - they are frozen during the collision. Sum over these 
configurations = elastic + inelastic diffraction. Though inelastic shadowing effects are a rather small correction of 
total cross section - presence of the fluctuations of the strength of NN interaction leads to significant 
fluctuations in inelastic pA, AA collisions (Baym, LF, MS,.. 92) - still not taken into account in MC generators.

Theoretical accuracy of the approach - nonnucleonic degrees of freedom - pions, off-mass-shell effects. 
Empirically Glauber for Ep=1 GeV, Gribov-Glauber for Ep≤ 500 GeV works with accuracy of better than 5% 
including photon - nucleus scattering.
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✔ Large longitudinal distance dominate the small x DIS  
Gribov, Ioffe, Pomeranchuk 65, Ioffe 68, Gribov 69

 Follows from the analysis of the representation of the forward Compton scattering amplitude  expressed as a 
Fourier transform of the matrix element of the commutator of  two electromagnetic (weak) current operators:

Longitudinal distances in DIS

The cross section of DIS can be expressed through the
commutator of two e.m. currents Jµ(y) in coordinate space:

〈N |[Jµ(y1), Jλ(y2)]|N〉

y1 and y2 are the points where γ∗ is absorbed and emitted.

** ** γγ γ γ

y
1 y1

y
2 y

2

Small     X Large  X

Analysis of the structure of the DIS processes leads to

(y1 − y2)transv ∼
1

Q
, lcoh ≡ (y1 − y2)long/2 ∼

1

2mNx

Here −Q2 is four momentum squared of the photon,
x = Q2/2(qpN) is the Bjorken scaling variable.

At EIC one can reach in e-A scattering x ∼ 10−3 for
Q2 ∼ 3GeV 2, corresponding to lcoh ∼ 100fm & 2RA.

EIC, March 1, 2002 M.Strikman

In the nucleus rest frame for z component of y2-y1 ≡  z ~ 
1

2mNx

Scaling violation for small x ⇒z= λs /2mNx, with λs << 1 at large Q2

Kovchegov & MS, Blok & Frankfurt

ImA�⇤N
µ⌫ (q2, 2qp) =

1

⇡

Z
exp

iq(y2�y1) hp| [jµ(y2), j⌫(y1)] |pi d4(y2 � y1)

full shadowing

>> 2 RA



✔ Nuclear shadowing in the limit of q0→∞, fixed Q2: 
relation   to the photon polarization operator & Gribov paradox

294 L. Frankfurt and M. Strikman, Hard nuclear processes and microscopic nuclear structure

nonperturbative valence quark distribution in a nucleon is centred at x — 1/7 and not at x 1 [asin eq.
(4.2)], one should effectively substitute x—* 7x in eq. (4.2). Moreover, it seems now that violation of
Bjorken scaling at small x in the flavour singlet channel depends more on the badly known
nonperturbative gluon distribution than on corrections to the leading logarithmic approximation (see

the discussion in ref. [21]).
For the valence quark distribution the violation of Bjorken scaling for x—*0 is expected to be

considerably weaker than that for sea quarks and gluons. This property is known from several
numerical calculations of VN(x, Q2) at x 0.015 which take a, in lix terms into account in first order.

Moreover, in perturbative QCD xD~(valence) x—.O -—- x in a wide Q2 range, because D~(valence) is
determined by the exchange of a q~pair in the crossed channel. On the other hand, the nonperturba-
tive valence quark distribution in a nucleon behaves as vi~for x —*0. (This behaviour follows from
Regge pole estimates, and it is consistent with existing experimental data.*)) As a result, in eq. (3.10)
the contribution from the region of small xiy (where maximum violation of Bjorken scaling occurs) is

small.
In the kinematical region which would be accessible experimentally in lepton—nucleus scattering in

the next decade, Q2 ~ 10 0eV2 for x 10_2 and Q2 1 0eV2 for x i0~for the muon beam at FNAL,
and Q2 a factor 3 larger for the Serpukhov 3 TeV machine* *), the discussed scaling violation, effects
seem to be a correction. So, the physics of the nuclear shadowing phenomenon is to a great extent due
to nonperturbative QCD.

4.2. Large longitudinal distances are relevant for nuclear shadowing

Essential for the theoretical discussion of nuclear shadowing is the fact that at small x, electroproduc-

tion amplitudes involve large longitudinal distances. It is easiest to use old-fashioned perturbation
theory to calculate the propagation distance for ~ to be in the hadron state n) with mass M~(cf. fig.
4.1):

At— 1iAE= 2q
0i(Q

2 +M~)—1 i2mNx, (4.5)

since essentially M~ Q2 Here AE is the difference between the energies of the virtual photon,
2 2 1/2 2 2 1/2

q
0 = (q — Q ) , and of the hadron state n), E~= (q +M~)

This result means that the values of the longitudinal distance y3 (along the direction of the ~
momentum in the rest frame of the nucleus) which are essential in the scattering process are large:

1 i2mNx [5, 6] (see also ref. [3]).

Fig. 4.1. At small x, -y’ goes into a hadron component In) before the nucleus mostly.

~ A calculation based on the sum rule technique [221shows that the observed valence quark distribution in a nucleon at —5—20GeV

2 and

x~ 0.1 is mostly due to nonperturbative QCD, due to and p reggeon exchanges (to within 30% accuracy).
* * I This situation may be changed dramatically if acceleration of nuclear beams is included into the HERA programme.

‘
For large q0 &  A >>1 all hadronic configurations |n>
 in γ* interact with black disk strength σtot=2πRA2

➠ only diagonal transitions n=n’ survive

Gross violation of Bjorken scaling - Gribov paradox (Bj) 

➠ Parton model solution - aligned jet model - Bj

➠ QCD aligned jet model - color screening and color transparency - LF & MS 85

Onset of the Gribov regime is likely in QCD though at much smaller x

⇓

QCD aligned jet model predicted correct magnitude of shadowing, diffraction at HERA, as 
well the slow energy dependence of diffraction in DIS.

F2A(�
⇤
A) / Q

2

Q

2
0

ln(2RAmN/x)2⇡R2
A



★ First clean tests of nuclear shadowing at large virtualities are likely to come from the pA 

run at LHC  in February 2013 and from ultraperipheral collisions in AA

Low-x WS - 27-30 June

M. Rangel
20

Low Mass Drell-Yan Production - Backup

Low-x WS - 27-30 June

M. Rangel
20

Low Mass Drell-Yan Production - Backup

x = 3 · 10�5
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 The Gribov theory of nuclear shadowing   relates  shadowing in γ* A and diffraction in the 

elementary process:   γ*+N → X +N.

Before  HERA one had to model  ep diffraction to calculate shadowing for 
σγ*A   (FS88-89, Kwiecinski89, Brodsky & Liu 90, Nikolaev & Zakharov 

91). More recently several groups  (Capella et al)  used the HERA 
diffractive data  as input to obtain a reasonable description of  the NMC 
data (however this analysis made several simplifying assumptions). Also the 
diffractive data were used to describe shadowing in γA scattering without 

free parameters.

Does not allow to calculate gluon pdfs and hence quark pdfs

Author's personal copy

268 L. Frankfurt et al. / Physics Reports 512 (2012) 255–393

Fig. 9. Graphs for to the total virtual photon–nucleus cross section, �� ⇤A . Graph a gives the impulse approximation; graphs b and c give the shadowing
correction arising from the interaction with two and three nucleons of the target, respectively.

When lc is larger than the diameter of the nucleus, 2RA, the virtual photon coherently (‘‘simultaneously’’) interactswith all
nucleons of the target located at the same impact parameter. For instance, for the nucleus of 40Ca, this happens for x  0.01.
On the other hand, when lc decreases and becomes compatible to the average distance between two nucleons in the nucleus,
rNN ⇡ 1.7 fm, all effects associated with large lc are expected to disappear. Therefore, the nuclear effects of shadowing and
antishadowing disappear for x > 0.2 (see also the discussion in Section 3.2 where this is discussed in the reference frame
of the fast moving nucleus).

The wave function of the projectile virtual photon is characterized by the distribution over components (fluctuations)
that widely differ in the strength of the interaction with the target: the fluctuations of a small transverse size correspond
to the small interaction strength and the large phase volume, while the fluctuations of a large transverse size correspond
to the large interaction strength but the small phase volume. A proper account of the interplay between the phase volume
of different configurations and their strength of interactions shows [122] that these components lead to the contributions
characterized by the same power of Q 2: �� ⇤T / 1/Q 2.1 Hence, at moderately small x, nuclear shadowing is a predominantly
non-perturbative QCD phenomenon complicated by the leading twist Q 2 evolution. At extremely small x, perturbative QCD
(pQCD) interactions become strong which leads to a change of the dynamics of nuclear shadowing, see the discussion in
Section 8.

At sufficiently high energies (small Bjorken x), when the virtual photon interacts with many nucleons of the target, the
lepton–nucleus scattering amplitude receives contributions from the graphs presented in Fig. 9. Considering the forward
scattering and taking the imaginary part of the graphs in Fig. 9 (presented by the vertical dashed lines), one obtains
the graphical representation for the total virtual photon–nucleus cross section, �� ⇤A. Note that there are other graphs,
corresponding to the interaction with four and more nucleons of the target, which are not shown in Fig. 9; the contribution
of these graphs to �� ⇤A is insignificant. However, they appear to be important in the case of the events with the multiplicity
significantly larger than the average.

Graph a in Fig. 9, which is a generalization of the left graph in Fig. 2 to the case of DIS, corresponds to the interaction with
one nucleon of the target (the impulse approximation). The contribution of graph a to �� ⇤A, which we denote �

(a)
� ⇤A, is

�
(a)
� ⇤A = A�� ⇤N , (31)

where �� ⇤N is the total virtual photon–nucleon cross section. The proton and neutron total cross sections (structure
functions) are very close at small x, and, therefore, unless specified, we shall not distinguish between protons and neutrons.
Also, in Eq. (31), we employed the non-relativistic approximation for the nucleus wave function. A more accurate treatment
would involve the light-cone many-nucleon approximation for the description of nuclei which leads to tiny corrections to
Eq. (31) for small x due to the Fermi motion effect, see Section 3.2. The good accuracy of this approximation has been tested
by numerous studies of elastic and total hadron–nucleus scattering cross sections at intermediate energies.

The total cross section in Eq. (31) corresponds to the sumof the cross sectionswith the transverse (�� ⇤
T N ) and longitudinal

(�� ⇤
L N ) polarizations of the virtual photon. These cross sections can be expressed in terms of the isospin-averaged inclusive

(unpolarized) structure function F2N(x,Q 2) and longitudinal structure function FL(x,Q 2), see, e.g. [101]:

�� ⇤
T N + �� ⇤

L N = �� ⇤N = 4⇡2↵em

Q 2(1 � x)
F2N(x,Q 2),

�� ⇤
L N = 4⇡2↵em

Q 2(1 � x)
FL(x,Q 2), (32)

1 This parton-model reasoning ismodified in QCDwhere the configurationswith almost on-mass-shell quarks are suppressed at largeQ 2 by the Sudakov
form factor. An account of radiation (Q 2 evolution) leads to the appearance of hard gluons (in addition to thenear on-mass-shell quarks) in thewave function
of the virtual photon. This property of QCD is important for the theoretical analysis of hard diffractive processes considered in Section 6.

model 
independent

model dependent but 
universal (~ same for 
different A)

four fold 
rescattering a 

small correction 
for x> 10-3

Author's personal copy
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Fig. 65. Comparison of the F2A(x,Q 2)/[AF2N (x,Q 2)] ratio for 40Ca [17] to our predictions corresponding to the sum of the leading twist and VMD
contributions. The lower band corresponds to LT + VMD; the upper band corresponds to LT + 0.5 VMD (see the text).

Since one does not have an unambiguous way to add the LT and VMD contributions, as an illustration, we consider the
scenario when the VMD contribution is added with the coefficient 1/2. This coefficient accounts for the duality between the
continuum and VMD contributions to diffraction, see also the discussion in Ref. [193]. The corresponding prediction is given
by the upper band in Fig. 65. As one can see from the figure, the ‘‘LT+ 0.5 VMD’’ prescription provides a good description of
the NMC data.

Figs. 63 and 65 illustrate the important qualitative phenomenon that the higher twist effects play an important role
in nuclear shadowing in the considered kinematics. This conclusion is in a broad agreement with the phenomenological
approaches to nuclear shadowing which include both the scaling (leading twist) and lowest mass (⇢,! and �) vector meson
(higher twist) contributions [85–92,94,95].

One should also mention a very different approach to nuclear shadowing, where nuclear shadowing is a purely higher
twist effect [206]. The analysis of [206] confirms our observation that the higher twist effects in the fixed-target kinematics
are large. So far the connection of the approach of [206] to the Gribov theory is not clear. In particular, the diagrams that
correspond to the vector meson production (which dominates the higher twist small-x contribution in the Gribov theory)
seem to be neglected in [206] as a very high twist effect. It would be interesting to compare predictions for the double
scattering contribution to F2A(x,Q 2) made using the approach of Ref. [206] and the Gribov relation between shadowing and
diffraction (see Eq. (43)), which, in this limit, is a consequence of unitarity, see the discussion in Section 3.

5.17. The EMC effect for heavy nuclei and the Lorentz dilation of the nuclear Coulomb field

This subsection is based on Ref. [207]. In QCD one usually treats the partonwave function of a nucleus A as built of quarks
and gluons. As a result, it satisfies the following momentum sum rule:

Z 1

0

⇥
xAVA(xA,Q 2) + xASA(xA,Q 2) + xAGA(xA,Q 2)

⇤
dxA = 1, (152)

where the summation over the quark flavors is assumed; (VA, SA,GA) refer to the (valence quark, sea quark, gluon)
distributions in the target; xA = Q 2/(2q0MA) where q0 is the virtual photon energy and MA is the nucleus mass. In this
approximation, one neglects electromagnetic effects both in the hadron wave function at the initial scale of the evolution,
Q 2
0 , and in the DGLAP QCD evolution.
In the case of a fast particle, its Coulomb field is transformed into the field of equivalent photons. As a result, the photons

become dynamical degrees of freedom. To take them into account requires the modification of the QCD evolution equations
by including the momentum distribution of the photons, PA, in addition to the standard contributions of quarks and gluons.
Thus, the presence of the photon component in the nuclear light-cone wave function leads to the following modification of
the momentum sum rule:

Z 1

0

⇥
xAVA(xA,Q 2) + xASA(xA,Q 2) + xAGA(xA,Q 2) + xAPA(xA,Q 2)

⇤
dxA = 1. (153)

To remove the kinematic effects, it is convenient to rescale the variables by introducing the light-cone fraction x defined as

x = AxA, (154)

8

- +



nD D

Mx

D

M* x

D

Mx

*

*γ γ

γ γ*
IP

IP IP

IP

p

n

n

p

p

Double scattering diagram for the γ∗D scattering

Qualitatively,  the connection is due to a possibility of small t to the nucleon at small x: 

Deuteron example -amplitudes of diffractive 
scattering off proton and off neutron interfere

Connection between nuclear shadowing and diffraction - nuclear rest frame

If √t ≤ “average momentum of nucleon in the nucleus” → large shadowing /interference

�tmin = x2m2
N (1 + M2

dif/Q2)2

9



d σ γ*+D→MX +(pn)

dt dMX2

d σ γ*+N→MX +(pn)

dt dMX2
= (2+2FD(4t))

   FD(t) is the deuteron form factor.    

 For t=0 - 100% constructive interference - (pn) system is D.   Coherence dies out at large t.

Integrate over t, MX    ➨ positive correction to the impulse approximation.  Coincides with the 
Gribov shadowing correction to the total cross section (up to small corrections due to the real 
part of the amplitude).

Explanation is unitarity - Abramovskii, Gribov, Kancheli cutting rules (AGK) -  with some technical differences 
due to scattering off nuclei - Bertocchi & Treleani

However the sign is opposite !!!

Using AGK cutting rules  we  re-derived original Gribov result for nuclear shadowing 
extending it to include the real part effects.  This approach does not require separation of 
diffraction into leading twist and higher twist contributions. It is essentially a consequence 
of unitarity and many nucleon approximation for the nucleus. Same is true for interactions with  
N>2  nucleons.  

10

Gives relations term by term for contribution of j-nucleon interactions to nuclear shadowing and to diffraction.



 Summary - Diffractive phenomena - inclusive diffraction and measurement of diffractive pdf’s 

Collins factorization theorem:  consider  hard processes like 

one can define fracture  (Trentadue &Veneziano) parton distributions

Theorem:    

For fixed              universal fracture pdf  + the evolution is  the same as for normal pdf’s

�� + T � X + T (T ⇥), �� + T � jet1 + jet2 + X + T (T ⇥)

f Dj (
x
xIP

,Q2,xIP, t)

xTf = 1� xIP(T)

Theorem is violated in dipole model of γ*N diffraction in several ways

xIP, t

� ⌘ x/xIP = Q

2
/(Q2 +M

2
X)
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☞ Measurements of F2
D(4)

☞ Measurements of dijet production

☞ Diffractive charm  production

HERA: Good consistency between H1 and  ZEUS three sets of measurements

DGLAP describes totality of the 
data well several crosschecks - 
Collins factorization theorem valid 
for discussed Q2,x range

(68), (69) and (70). The χ2 fit to the experimental values of F D(3)
2 determines the free

parameters of the fit: nIR, αIP (0), Aj , Bj and Cj.

The 2006 H1 analysis of hard diffraction in DIS ep → eXY (Y denotes products of
dissociation of the proton) [40,41] is based on its own data sample, which covers the
following kinematics: 8.5 ≤ Q2 < 1600 GeV2, 0.0003 < xIP < 0.03, 0.0017 < β < 0.8,
|t| < 1 GeV2. Since the diffractive events were reconstructed using the rapidity gap
selection method, the proton was allowed to dissociate into states with a low invariant
mass, MY < 1.6 GeV.

The results of the H1 QCD fit in terms of the quark and gluon PDFs, fu/IP and fg/IP , at
Q2 = 2.5 GeV2 as functions of β are presented in Fig. 18. The solid curves correspond to
fit B; the dashed curves correspond to fit A. The main difference between fits A and B
is that while the parameters Aj , Bj and Cj in Eq. (70) are free in fit A, Cg = 0 for the
gluon PDF in Fit B.
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Fig. 18. The quark and gluon PDFs at Q2 = 2.5 GeV2 as functions of β.

The need to have two types of fits is explained by the fact that the gluon diffractive PDF is
determined from the scaling violations of F D(3)

2 . However, at large β, the scaling violations
of F D(3)

2 are predominantly determined by the quark diffractive PDFs. Therefore, the gluon
diffractive PDF at large β is very weakly constrained by the data, which allows (requires)
to consider two scenarios (fit A and fit B) of the gluon diffractive PDFs with different
behavior in the large-β limit, see the right panel of Fig. 18.

One should also mention that both fits correspond to very similar values of αIP (0) and
nIR:

Fit A : αIP (0)= 1.118 ± 0.008 , nIR = (1.7 ± 0.4) × 10−3 ,

36

The quark and gluon diffractive PDFs at Q2 =2.5 
GeV2 as a function of β 

gluon dPDF >> quark dPDF

Current fits to soft hadron - hadron interactions find   
αIP(0)=1.09 - 1.10

☛Diffraction at HERA is mostly due to the interaction of 
hadron size components of γ* not small dipoles. Confirms 
QCD aligned jet logic for x > 10-4

↵IP = 1.12± 0.01

independent of Q
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Combining Gribov theory  of shadowing and pQCD factorization theorem for diffraction in DIS 
allows to calculate LT shadowing  for all parton densities  (FS98) (instead of calculating F2A only)

 Theoretical expectations for shadowing in the  LT limit

Theorem:   In  the low thickness limit the leading twist nuclear shadowing is 
unambiguously expressed through the nucleon diffractive  parton 
densities                         :

 
  

2
Im   −  Re

22
Im  + Re                                         

2

HH

j j

p     p        p      p

γ∗ γ∗HH
γ∗ γ∗

j j

Α Α

PPP P

Hard diffraction 

off parton  "j"

Leading twist contribution

structure function  fj (x,Q2)

to the nuclear shadowing for

N1
N2

A−2

f Dj (
x
xIP

,Q2,xIP, t)

13



Theorem: in the low thickness limit (or for  x>0.005) 

f j/A(x,Q2)/A= f j/N(x,Q2)� 1
2+2η2

R
d2b

R ∞
�∞dz1

R ∞
z1 dz2

R x0
x dxIP·

· f Dj/N
�
β,Q2,xIP, t

�
|k2t =0

ρA(b,z1) ρA(b,z2)Re
⇥
(1� iη)2 exp(ixIPmN(z1� z2))

⇤
,

f j/A(x,Q2), f j/N(x,Q2)

x0(quarks)⇠ 0.1, x0(gluons)⇠ 0.03

where are nucleus(nucleon) pdf's,

nuclear matter density.� = ReAdiff/ImAdiff � 0.174, ⇥A(r)

14
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FIG. 3: The forward γ∗-nucleus triple scattering amplitude.

Corrections to the elastic rescattering approximation can be estimated by taking into

account the effects of fluctuations of the strength of the rescattering interaction. Modeling

of these effects was performed in [23] with the conclusion that for a wide range of cross

section fluctuations, the reduction of nuclear shadowing (for fixed σeff ) remains a rather

small correction for all nuclei.

After introducing the attenuation factor into Eq. (2), the complete expression for the

shadowing correction, δfj/A, becomes

δfj/A(x, Q2) =
A(A − 1)

2
16πRe

[
(1 − iη)2

1 + η2

∫
d2b

∫ ∞

−∞
dz1

∫ ∞

z1

dz2

∫ xIP,0

x

dxIP

×fD(4)
j/N (β, Q2, xIP , tmin)ρA(b, z1)ρA(b, z2)e

ixIP mN (z1−z2)e−(A/2)(1−iη)σj
eff

∫ z2
z1

dzρA(b,z)

]
. (6)

This is our master equation (see also Eq. (14)). It contains several sources of model-

dependence and theoretical ambiguity. First, the attenuation factor T (b, z1, z2) assumes

that multiple rescatterings can be described by a single rescattering cross section [58] σj
eff ,

i.e. cross section fluctuations are neglected in the interaction with three and more nucleons.

Note that in the phenomenologically important kinematic region of fixed-target experiments,

x > 0.01 and Q2 > 2 GeV2, the uncertainty associated with the attenuation factor T (b, z1, z2)

is negligible since the rescattering contribution to shadowing is small, see Fig. 8. Second, the

10

N

!"
!"

AA

N

FIG. 2: The forward γ∗-nucleus rescattering amplitude that gives the principal contribution to

nuclear shadowing.

nuclear wave function squared can be approximated well by the product of individual

ρA(b, zi) for each nucleon (the so-called independent particle approximation).

• The factor eixIP mN (z1−z2) is a consequence of the propagation of the diffractively pro-

duced intermediate state between the two nucleons involved.

Step 2. The QCD factorization theorems for inclusive [25] and hard diffractive DIS [7]

can be used to relate the structure functions in Eq. (1) to the corresponding – inclusive and

diffractive – parton distribution functions. Since the coefficient functions (hard scattering

parts) are the same for both inclusive and diffractive structure functions, the relation between

the shadowing correction to nPDFs and the proton diffractive parton distribution functions

(PDFs) is given by an equation similar to Eq. (1). The shadowing correction to the nPDF

of flavor j, fj/A, δf (2)
j/A, is related to the proton (nucleon) diffractive PDF fD(4)

j/N of the same

flavor

δf (2)
j/A(x, Q2) =

A(A − 1)

2
16πRe

[
(1 − iη)2

1 + η2

∫
d2b

∫ ∞

−∞
dz1

∫ ∞

z1

dz2

∫ xIP,0

x

dxIP

×fD(4)
j/N (β, Q2, xIP , t)|t=tmin

ρA(b, z1)ρA(b, z2)e
ixIP mN (z1−z2)

]
. (2)

8

Including higher order terms + ....+

Color fluctuation approximation: Amplitude to interact with j nucleons  ~σj 

does not 
depend on fj

         integral over σ with weight Pj(σ) - probability for the probe to be in configuration
 which interacts  with cross section σ;
�....⇥j

�
�k

⇥
j

=
⇤ �

0
d�Pj(�)�k

For intermediate x one needs also to keep finite coherence length factor ei(z1�xz2)mN xIP

15



Fluctuations with  small σ  are significant only for <σ>,  <σ2>

<σk> for k> 2  dominated by soft fluctuations. αIP(0)=1.1 - proof that soft dynamics dominates 
already for <σ2>
<σk> /<σ2> can be modeled based on soft physics - effects of dispersion in this case 
known to be  small ( we did a numerical study for our case where these effects are 
larger due to presence of small configurations).  

Fluctuation approximation for Q0
2:

�

soft

(x,Q2
0) ⌘

⌦
�

3
↵
j

/

⌦
�

2
↵
j

where 

which can be estimated semiquantitatively.  

is the only parameter (weakly dependent on x)

16
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r⊥1 r⊥2

Fig. 13. Geometry of the parton overlap in the transverse plane.

As Bjorken x is decreased, the strength of the interaction increases, and an increasing
number of nucleons screen each other within the cylinder of the radius of ∼

√
2B ≈ 0.9 fm

(although this radius should slowly increase with decreasing x for x ≤ 10−3, the current
data does not find a significant change of the slope in the HERA range of energies).
Therefore, a transverse slice of the wave function of a heavy nucleus for x ∼ 5 × 10−3

looks like as a system of colorless (white) clusters with some clusters (∼ 30% – cf. a
numerical study below) built of two rather than of one nucleon, with a gradual increase
of the number of two-nucleon, three-nucleon, etc. clusters with decreasing x.

The microscopic picture of nuclear shadowing described above allows one to address also
the question of at what transverse distances from the centers of two nucleons, ρ1 = r⊥1 and
ρ2 = r⊥2, for a given transverse internucleon distance, b, shadowing occurs, see Fig. 13.
First we observe that experimentally the t dependence of inclusive diffraction and deeply
virtual Compton scattering (DVCS) for similar values of x and Q2 are very close, BDVCS =
6.02 ± 0.35 ± 0.39 GeV−2 in the H1 2005 analysis [140] and BDVCS = 5.45 ± 0.19 ± 0.34
GeV−2 in the H1 2007 analysis [141], so that |BDVCS − B| < 2 GeV−2. This implies that
the parton removed from the initial nucleon and the parton in the final nucleon are located
at very close impact parameters. As a result, the screening effect occurs very locally in
the transverse plane, mostly in the region along the axis between the two nucleons. If we
neglect the small difference between the slopes of DVCS and diffraction, we obtain:

f(b) =
∫

p(r⊥1) p(r⊥2) δ(r⊥1 − r⊥2 − b) d2r⊥1 d
2r⊥2 , (75)

where f(b) is the Fourier transform of the t dependence of the diffractive cross section;
p(r⊥i) are transverse distributions of partons.

In our derivations, the global and local color neutrality are satisfied at every step. This
is very different from the approaches where the nucleus is initially built from free quarks
and the color neutrality is achieved by imposing additional conditions at a later stage.

46

A transverse slice of the wave function of a heavy nucleus for x ∼ 5 × 10−3 looks like a system of colorless 
(white) clusters with some clusters (∼ 30% ) built of two rather than of one nucleon, with a gradual increase 
of the number of two-nucleon, three-nucleon, etc. clusters with decreasing x.

Key element of the logic - nucleus is a system of color singlet clusters - nucleons which are weakly
 deformed in nuclei - checked by success of the Gribov-Glauber theory of soft hA interactions
 - σtot (hA) to few %. 

In our derivations, the global and local color neutrality are satisfied at every step. This is very different 
from the approaches where the nucleus is initially built from free quarks and one tries to implement the 
color neutrality at a later stage.
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introduce the ratio R defined as follows:

R(βmax, x) ≡
∫ 0.1
x dxIPβfD(3)

j/N (β, Q2
0, xIP )Θ(βmax − β)

∫ 0.1
x dxIPβfD(3)

j/N (β, Q2
0, xIP )

. (109)

The ratio R for the ū-quark and gluon channels at Q2
0 = 4 GeV2 is presented in Fig. 36.

In the figure, the solid curves correspond to βmax = 0.5; the dotted curves correspond to
βmax = 0.1; the short-dashed curves correspond to βmax = 0.01; the dot-dashed curves
correspond to βmax = 0.001.
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Fig. 36. The ratio R of Eq. (109) at Q2
0 = 4 GeV2. The solid curves correspond to βmax = 0.5;

the dotted curves correspond to βmax = 0.1; the short-dashed curves correspond to βmax = 0.01;
the dot-dashed curves correspond to βmax = 0.001.

In Fig. 36, one can see how much different β-regions contribute to σj
2(x, Q2) and, hence,

to nuclear shadowing. For instance, for x ≤ 10−4, the β ≤ 0.001-region contributes to
nuclear shadowing at most 9% in the quark channel and 16% in the gluon channel. This
estimate suggests that even for such small values of Bjorken x, various small-x effects,
which are not included in the DGLAP picture, should not lead to significant corrections
in the evaluation of nuclear PDFs.

5.1.4 Nuclear antishadowing and DGLAP evolution

By construction, Eq. (57) does not describe nuclear modifications of PDFs for x > 0.1,
where such effects as nuclear antishadowing and the EMC effect take place. However,
we need to know nuclear PDFs at our chosen scale Q2

0 = 4 GeV2 for a wide range of
the values of Bjorken x′, x ≤ x′ ≤ 1, since we use those nPDFs as an input for the
Dokshitzer-Gribov-Lipatov-Altarelly-Parisi (DGLAP) evolution to higher Q2 > Q2

0.

The DGLAP evolution equations for PDFs fj of any target (we use the nucleus) read [73]:

70

Contributions of different β=Q2/(Q2+M2) to shadowing. M2~ Q2 dominate in a wide x range

Confer:     BFKL  for          requires large rapidity interval for diffraction ln (1/β) > 3 ÷4 

↵IP = 1.3÷ 1.5 ↵IP = 1.11 rather thanAlso
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 Balitski - Kovchegov eq.  - even higher energies
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Fig. 29. The cross sections σj(H)
soft , σ

j(L)
soft , and σj

2(x,Q
2
0) as functions of Bjorken x at fixed Q2

0 = 4
GeV2. The left panel corresponds to the ū-quark; the right panel corresponds to gluons.

for nuclear shadowing made with the effective cross section σj(L)
soft will be referred to as

”FGS10 L”.

Figure 29 presents σj(H)
soft (x,Q

2
0) (model 1) and σj(L)

soft (W
2) (model 2) as functions of Bjorken

x at fixed Q2
0 = 4 GeV2. (Note that for the latter cross section, W 2 = Q2

0/x−Q2
0+m2

N .) For
comparison and completeness, we also give σj

2(x,Q
2
0) which is relevant for the calculation

of nuclear shadowing in the quasi-eikonal approximation (see Fig. 45). The left panel
of Fig. 29 corresponds to the ū-quark; the right panel corresponds to gluons. Note that
σj(L)
soft (W

2) is flavor-independent.

The difference between the approximation when one uses σj
2(x,Q

2
0) as the effective rescat-

tering cross section and the color fluctuation approximation (models 1 and 2) is the
amount of point-like (very weakly interacting) configurations (PLC) in the virtual pho-
ton wave function. The both approximations can be considered as generalizations of the
QCD-improved aligned jet model (AJM), where one has two components—the strongly
interacting AJM component and a PLC. Note also that in general the fraction of PLC
decreases with increasing energy.

5.1.3 Large β diffraction dominates nuclear shadowing down to x ∼ 10−4

The effective cross section σj
2(x,Q

2) determines the magnitude of nuclear shadowing when
only the interaction with two nucleons of the target is important. This is the case for the
deuteron and heavy nuclei in the low-nuclear density limit. In the following, we examine
what values of the diffractive masses MX , or what values of β = Q2/(Q2+M2

X), dominate
the integrand of the expression for σj

2(x,Q
2) in Eq. (52). This question is important in

relation to the issue of the applicability of our leading twist approach based on the DGLAP
evolution.

To quantify the contributions of different regions of integration over β to σj
2(x,Q

2), we

80

The cross sections σj(H)(soft), σj(L)(soft), and σj2(x,Q2) as functions of Bjorken x at fixed 
Q20= 4 GeV2. The left panel corresponds to the u-quark; the right panel corresponds 
to gluons.

-

The cross sections �

soft

(x,Q2
0) ⌘ �3 ⌘

⌦
�

3
↵
j

/

⌦
�

2
↵
j

and �2 ⌘
⌦
�2

↵
j
/ h�ij
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Note that the strength of  interaction is large but thickness of the realistic nuclei is 
pretty low. So number of interactions is rather small and fluctuations are large

Fluctuations of gluon density in lead  on event by event basis (Alvioli and MS 09)

4 fm

yellow  <  1
1 green    <2
2 <cyan  < 3
3 <blue  <4
4< magenta < 5
   5< red  

Heavy nuclei are not large 
enough to suppress fluctuations - 
A=200 nucleus for gluons is like a 
thin slice of Swiss cheese. 
   Far from the A →∞ limit.
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Fig. 31. Predictions for nuclear shadowing at the input scale Q2
0 = 4 GeV2. The ratios Rj (ū and

c quarks and gluons) and RF2 as functions of Bjorken x at Q2 = 4. The four upper panels are
for 40Ca; the four lower panels are for 208Pb. Two sets of curves correspond to models FGS10 H
and FGS10 L (see the text).
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Fig. 31. Predictions for nuclear shadowing at the input scale Q2
0 = 4 GeV2. The ratios Rj (ū and

c quarks and gluons) and RF2 as functions of Bjorken x at Q2 = 4. The four upper panels are
for 40Ca; the four lower panels are for 208Pb. Two sets of curves correspond to models FGS10 H
and FGS10 L (see the text).
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Fig. 31. Predictions for nuclear shadowing at the input scale Q2
0 = 4 GeV2. The ratios Rj (ū and

c quarks and gluons) and RF2 as functions of Bjorken x at Q2 = 4. The four upper panels are
for 40Ca; the four lower panels are for 208Pb. Two sets of curves correspond to models FGS10 H
and FGS10 L (see the text).
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Fig. 31. Predictions for nuclear shadowing at the input scale Q2
0 = 4 GeV2. The ratios Rj (ū and

c quarks and gluons) and RF2 as functions of Bjorken x at Q2 = 4. The four upper panels are
for 40Ca; the four lower panels are for 208Pb. Two sets of curves correspond to models FGS10 H
and FGS10 L (see the text).
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  Numerical studies impose antishadowing to satisfy the sum rules for baryon 
charge and momentum (LF + MS + Liuti 90) - sensitivity to model of 
fluctuations is weak.  At the moment uncertainty from HERA measurements is 
comparable.

NLO pdfs - as 
diffractive pdfs 

are NLO
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Fig. 34. Prediction for nuclear PDFs and structure functions for 208Pb. The ratios Rj (ū and c
quarks and gluons) and RF2 as functions of Bjorken x at Q2 = 4, 10, 100 and 10,000 GeV2. The
four upper panels correspond to FGS10 H; the four lower panels correspond to FGS10 L.
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Fig. 34. Prediction for nuclear PDFs and structure functions for 208Pb. The ratios Rj (ū and c
quarks and gluons) and RF2 as functions of Bjorken x at Q2 = 4, 10, 100 and 10,000 GeV2. The
four upper panels correspond to FGS10 H; the four lower panels correspond to FGS10 L.
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Fig. 34. Prediction for nuclear PDFs and structure functions for 208Pb. The ratios Rj (ū and c
quarks and gluons) and RF2 as functions of Bjorken x at Q2 = 4, 10, 100 and 10,000 GeV2. The
four upper panels correspond to FGS10 H; the four lower panels correspond to FGS10 L.
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Fig. 40. Impact parameter dependence of nuclear shadowing for 40Ca (upper green surfaces) and
208Pb (lower red surfaces). The graphs show the ratio Rj(x, b,Q2) of Eq. (132) as a function of
x and the impact parameter |!b| at Q2 = 4 GeV2. The top panel corresponds to ū-quarks; the
bottom panel corresponds to gluons. For the evaluation of nuclear shadowing, model FGS10 H
was used (see the text).

results for the b-integrated nPDFs (i.e., usual nPDFs), see Figs. 33 and 34. All curves
correspond to our input scale Q2

0 = 4 GeV2 and to model FGS10 H. The antishadowing
for gluons is taken to be exactly as in the b-integrated case. As can be seen from Fig. 41,
nuclear shadowing is larger at small impact parameters than that in the case when one
integrates over all b. This is a natural consequence of the fact that the density of nucleons
is larger in the center of the nucleus.

In Fig. 42, we plot fj/A/(ATA(b)fj/N ) as a function of the impact parameter b for three
different values of x, x = 10−4, x = 10−3, and x = 0.005. All curves correspond to model

100

 Impact parameter dependence of nuclear shadowing for 40Ca (upper green surfaces) and 208Pb 
(lower red surfaces). The graphs show the ratio Rj(x,b,Q2)  as a function of x and the impact 
parameter |b| at Q2 = 4 GeV2. The top panel corresponds to ū-quarks; the bottom panel 
corresponds to gluons. For the evaluation of nuclear shadowing, model FGS10 H was used. 
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Fig. 41. The ratio fj/A/(ATA(b)fj/N ) as a function of x. The solid curves correspond to the
central impact parameter (b = 0); the dotted curves are for the nPDFs integrated over all b (the
same as in Figs. 33 and 34). All curves correspond to Q2

0 = 4 GeV2 and to model FGS10 H.

FGS10 H and Q2
0 = 4 GeV2. As one see from the figure, nuclear shadowing for gluons is

larger than for quarks in essentially an entire region of b.

DIS off nuclear targets involves usual nPDFs that are integrated over all impact param-
eters b. However, using the fact the nuclear shadowing is local in the impact parameter
[nuclear shadowing depends only on the nuclear density at a given b and will be same
for two different nuclei, A1 and A2, for the range of impact parameters satisfying the
condition A1TA1(b1) = A2TA2(b2)], one can enhance the contribution of small b by con-
sidering special linear combinations of the structure functions (parton distributions) of
different nuclei. In particular, one can effectively eliminate the contribution of single and
double scattering, and, thus, essentially subtract the contribution of the nuclear edge
(leave in mostly the contribution of the nuclear center) by considering, e.g., the following
combination:

F2A(x,Q
2)− λA/A0F2A0(x,Q

2)− (A− λA/A0A0)F2N (x,Q
2) , (133)
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Fig. 42. The ratio fj/A/(ATA(b)fj/N ) as a function of the impact parameter b for fixed values of
x = 10−4, x = 10−3, and x = 0.005. All curves correspond to FGS10 H and Q2

0 = 4 GeV2.

where A refers to a heavy nucleus; A0 refers to a light nucleus (such as 4He and 12C); the
parameter λA/A0 is defined as

λA/A0 ≡
∫

d2bA2T 2
A(b)

∫

d2bA2
0T

2
A0
(b)

. (134)

Since the expansion of the expression in Eq. (133) in the number of interactions with the
target nucleons starts from the term proportional to T 3

A(b), the combination in Eq. (133)
has the support for the values of b that are more central (smaller) than those for the
unsubtracted F2A(x,Q2).

The dependence of nPDFs on the impact parameter and, thus, our predictions for nuclear
shadowing as a function of the impact parameter b can be probed in proton-nucleus (pA)
and nucleus-nucleus (AA) collisions, where the centrality (the impact parameter b) is
defined by the multiplicity of binary collisions. Examples of the application of the impact
parameter dependent nPDFs involve inclusive production of pions [177] and J/ψ [178,179]
in dA and AA collisions at RHIC and in pA and AA collisions at the LHC [180], where
collisions with different centrality are selected using, e.g., the number of wounded nucleons.

102

Shadowing strongly depends  on the impact parameter,b,  - one can formally introduce nuclear diagonal 

generalized parton distributions. In LT theory - one just needs to remove integral over b.    

 Nuclear diagonal generalized parton distributions.
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models for the rescattering cross section σj
soft, which we called σj(H)

soft and σj(L)
soft . This leads

to the spread in the predictions for nuclear shadowing for small values of x (scenarios
FGS10 H and FGS10 L), see the discussion and results in Sec. 5.1.2, 5.1.6, and 5.8.

(iv) The uncertainty related to the choice of the nucleon PDFs, primarely the gluon PDF,
at x ∼ 10−4 and Q2 = 4 GeV2.

The largest uncertainty among the first three that we just mentioned is the statistical
error in the value of Bdiff , Bdiff = 6 ± 1.6 GeV−2, extracted from the H1 data taken
with the forward proton spectrometer [62]. (Note that this value of Bdiff is somewhat
lower than the ZEUS LPS result, Bdiff = 7.0 ± 0.3 GeV−2 [72]. The two values are still
consistent with each other within errors.) To assess the uncertainty of our predictions
related to the experimental uncertainty in Bdiff , we vary the used value of Bdiff and repeat
our calculations of nuclear PDFs using Bdiff = 6 − 1 = 5 GeV−2 and Bdiff = 6 + 1 = 7
GeV−2. In Fig. 46, we present the resulting nuclear PDFs in FGS10 H model: the central
solid curves correspond to our standard choice Bdiff = 6 GeV−2 (same as in Figs. 33 and
34); the shaded areas represent the theoretical uncertainty related to the experimental
uncertainty in Bdiff and fill in the area between the predictions with Bdiff = 5 GeV−2

(upper boundary) and Bdiff = 7 GeV−2 (lower boundary). The effect of the variation of
Bdiff in the calculation with model FGS10 L is similar to the one presented in Fig. 46.
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Fig. 46. Nuclear PDFs calculated with our standard choice Bdiff = 6 GeV−2 (solid curves) and
with Bdiff = 5 GeV−2 and Bdiff = 7 GeV−2 that correspond to the upper and lower boundaries
of the shaded areas, respectively. All curves correspond to model FGS10 H and Q2

0 = 4 GeV2.
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Nuclear PDFs calculated with our standard choice Bdiff = 6 GeV−2 (solid 
curves) and with Bdiff = 5 GeV−2 and Bdiff = 7 GeV−2 that correspond to the 
upper and lower boundaries of the shaded areas, respectively.  All curves 
correspond to model FGS10 H and Q20 = 4 GeV2.

Numerical uncertainties due to diffractive and pdf inputs.
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The fact that nuclear shadowing in the gluon channel rather rapidly decreases after a
very short Q2 evolution is a consequence of the presence of antishadowing and large-x
unshadowed region (which corresponds to point-like configurations in the virtual photon).
Indeed, because of the character of QCD evolution, nPDFs at small x and Q2 > Q2

0

originate from the larger values of Bjorken x, x0 > x, at the input scale Q2
0. Therefore,

the effects of antishadowing and the presence of non-shadowed point-like configurations
(for x > 0.2 in our approach) feed into the QCD evolution and decrease nuclear shadowing
after a few steps of the QCD evolution. For an addition discusion of QCD evolution of
nPDFs, see Sect. 5.14.

We also stress that in the limit of the low nuclear density when the interaction with
only two nucleons of the target is important (the deuteron target is the best example),
the modeling of multiple rescatterings using the color fluctuation approximation is not
needed, and, as a result, one can evaluate nuclear PDFs using Eq. (64) at any scale Q2

without the need of QCD evolution.

The HERA experiments do not cover a sufficiently large range of Q2 for x ∼ 10−4 to
extract the nucleon gluon PDF for Q2 ∼ 4 GeV2. (In the sea quark channel, the kinematic
coverage of small x region is much better and, hence, the quark PDFs are known with
much higher precision.) This can be seen from a comparison of the current fits to the data
(CTEQ5M [160], CTEQ6.6 [183], HERAPDF1.0 [184], and NLO MSTW2008 [185]), see
Fig. 48, where they are presented as functions of x at Q2 = 4 GeV2. While the choice of the
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Fig. 48. Comparison of several current parameterizations of the gluon PDF in the nucleon at
Q2 = 4 GeV2 as a function of x. The solid curve is CTEQ5M [160] (used in this review); the
dotted curve is CTEQ6.6 [183]; the green dot-dashed curve is HERAPDF1.0 [184]; the black
dot-dashed curve is NLO MSTW2008 [185].

nucleon gluon PDF does not impact very strongly the difference of nuclear and nucleon
PDFs [Eq. (125)] since it only affects the value of σj(H)

soft , the effect is more significant for the
ratios of the gluon PDFs in nuclei and the nucleon. This happens because the leading twist
theory of nuclear shadowing leads to different shadowing for the same diffractive PDFs

109

and different nucleon PDFs and, hence, the use of our nuclear shadowing ratios requires
specifying the parameterization of the nucleon PDFs. An example of this is presented in
Fig. 49, where we compare our predictions for gA(x,Q2

0)/[AgN(x,Q
2
0)] for

208Pb at Q2
0 = 4

GeV2 calculated using CTEQ5M (upper band, our standard choice in this review) and
CTEQ6.6 (lower band) parameterizations of the proton gluon PDF. The upper boundary
of each band corresponds to model FGS10 L; the lower boundary corresponds to FGS10 H.
As one can see from Fig. 49, the uncertainty associated with the choice of the gluon PDF is
not large (it is smaller than the uncertainty in the slope Bdiff , compare Fig. 49 to Fig. 46)
and essentially disappears for x ≥ 10−3. For the quark case, the discussed uncertainty is
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Fig. 49. Predictions for gA(x,Q2
0)/[AgN (x,Q2

0)] for
208Pb at Q2

0 = 4 GeV2 as a function of x
calculated using CTEQ5M (upper band, our standard choice in this review) and CTEQ6.6 (lower
band) parameterizations of the proton gluon PDF.

practically absent for all x.

In summary, theoretical uncertainties of our predictions for the leading twist nuclear shad-
owing in nPDFs, which are related to the structure of color fluctuations, appear to be
smaller than the uncertainty of the experimental input due to the experimental uncer-
tainty in the value of the diffractive slope Bdiff and, in the case of gluons, the uncertainties
in the nucleon gluon PDF at x ∼ 10−4.

5.10 The double scattering contribution to nuclear shadowing vs. the full result

To better understand the theoretical uncertainty associated with modeling the multiple
interactions using the color-fluctuation approximation, it is important to compare the
full calculation of nuclear shadowing to the calculation, where only the double rescat-
tering contribution to nuclear shadowing is retained. The latter corresponds to setting
σj
soft(x,Q

2) = 0 in Eq. (64). This comparison is presented in Fig. 50. All curves cor-
respond to Q2 = 4 GeV2. The solid (FGS10 H) and dotted (FGS10 L) curves are the

110

Nucleon pdf uncertainty - gluons at x ~ 10-4 and Q2=4 GeV2

corresponding uncertainty for (anti)quarks at x ~ 10-4 is  negligible
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the leading twist theory of nuclear shadowing [the shaded area bound by the two solid
curves corresponding to models FGS10 H (lower boundary) and FGS10 L (upper bound-
ary)], the EPS09 fit (dotted curves and the corresponding shaded error bands) [51], and
the HKN07 fit (dot-dashed curves) [45]; all curves correspond to the NLO accuracy. The
ratios of the nuclear to nucleon PDFs are plotted as a function of x at two fixed values of
Q2: Q2 = 4 GeV2 (upper panels) and Q2 = 10 GeV2 (lower panels).
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Fig. 51. Comparison of predictions of the leading twist theory of nuclear shadowing [the area
bound by the two solid curves corresponding to models FGS10 H (lower boundary) and FGS10 L
(upper boundary)], the EPS09 fit (dotted curves and the corresponding shaded error bands) [51],
and the HKN07 fit (dot-dashed curves) [45]. The NLO fj/A(x,Q

2)/[Afj/N (x,Q2)] ratios for the
ū-quark and gluon distributions in 208Pb are plotted as functions of x at Q2 = 4 GeV2 (upper
panels) and Q2 = 10 GeV2 (lower panels).

As one can see from Fig. 51, the three compared approaches give rather close values for
nuclear shadowing in the sea-quark channel for a wide range of x, 10−5 ≤ x ≤ 0.02−0.03.
For larger x, the HKN07 fit deviates from the other two due to the assumed antishadowing
for the sea quarks.

In the gluon channel, our approach suggests much larger shadowing at Q2 = 4 GeV2 than
that suggested by the extrapolation of the EPS09 and HKN07 results. Here, however,
one has to make a distinction. While the shadowing in the gluon channel is insignificant
in the HKN07 fit for all Q2 scales, at the input scale Q2

0 = 1.69 GeV2, the EPS09 fit
suggests very large gluon shadowing with the very large theoretical uncertainty [51]. This
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Comparison of predictions of the leading twist theory of nuclear shadowing [the area bound by the two 
solid curves corresponding to models FGS10 H (lower boundary) and FGS10 L (upper boundary)], the 
EPS09 fit (dotted curves and the corresponding shaded error bands), and the HKN07 fit (dot-dashed 
curves). The NLO fj/A(x, Q2)/[Afj/N (x, Q2)] ratios for the ū-quark and gluon distributions in 208Pb are 
plotted as functions of x at Q2 = 4 GeV2 (upper panels) and Q2 = 10 GeV2 (lower panels).
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Figure 1: High energy quarkonium photoproduction in the leading twist approximation.

accounts for the inelastic strong interactions of the nuclei at impact parameters b ≤ 2RA

and, hence, suppresses the corresponding contribution to the Υ photoproduction. In
our calculations we use the nuclear matter density ρA(z,"b) obtained from the mean field
Hartree-Fock-Skyrme (HFS) model, which describes many global properties of nuclei [27]
as well as many single-particle nuclear structure characteristics extracted from the high
energy A(e, e′p) reactions [28].

The amplitude of Υ photoproduction (necessary for the calculation of σγA→ΥA in
eq. (2.1)) in the leading twist approximation is described by the series of the Feynman
diagrams depicted in figure. 1. The QCD factorization theorem2 for exclusive meson pho-
toproduction [5, 7, 29] allows one to express the imaginary part of the forward amplitude
for the production of a heavy vector meson by a photon, γ + T → V + T , through con-
volution of the wave function of the meson at the zero transverse separation between the
quark and antiquark, the hard interaction block and the generalized parton distribution
(GPD) of the target, GT (x1, x2, Q2, tmin), evaluated at tmin ≈ −x2m2

N . The momentum
light cone fractions xi of the gluons attached to the quark loop satisfy the relation:

x1 − x2 =
m2

Υ

s
≡ x , (2.4)

where s = 4ENω = 4γωmN is the invariant energy for γ − N scattering (EN = γmN is
the energy per nucleon in the c.m. of the nucleus-nucleus collisions). If the quark Fermi
motion and binding effects were negligible, then x2 & x1 as a consequence of the fact that

2The proof of the factorization theorem for diffractive electroproduction of vector mesons is rather

straightforward [29] and, therefore, it is generally accepted in the published literature. At the same time,

the proof of the factorization theorem is more delicate in the case of hadron-initiated processes such as

diffraction of pions into two jets. For such processes factorization was questioned in refs. [30, 31]. However,

approximations used in these papers appear to violate gauge invariance when describing hadron desinte-

gration into jets in high-energy processes off the nucleon (nucleus) target. In particular, the same approx-

imations lead to the formulae for the process of dijet production by the pion projectile off the Coulomb

field of a nucleon (nucleus) [32], which differ from the exact answer deduced from the requirement of the

conservation of the e.m. current and renormalizability of QCD [33].
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skewness which can be accounted for by substituting x in Eq. (215) by x+. The ratio
r = x+/x depends on Q2 and the mass of the produced vector meson. For example, for
the photoproduction of J/ψ, r ≈ 1 and it slowly decreases with Q2 to r ≈ 1/2, while for
the Υ case, r ∼ 1/2 already for Q2 = 0 [233].

Figure 86 presents our predictions for the ratio RVM = (gA(x,Q2)/[AgN(x,Q2)]2 as a
function of x forQ2 = 4 and 10 GeV2. The shaded bands reflect the theoretical uncertainty
of our predictions: the lower boundaries of the bands correspond to model FGS10 H;
the upper boundaries correspond to model FGS10 L. As one can see from Fig. 86, the
suppression of RVM for small x due to nuclear shadowing and the enhancement around
x ≈ 0.1 due to antishadowing are very significant.
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Fig. 86. The ratio RVM = (gA(x,Q2)/[AgN (x,Q2)])2 as a function of x at Q2 = 4 GeV2 (solid
curves) and Q = 10 GeV2 (dotted curves). The shaded bands reflect the theoretical uncertainty
of our predictions.

Since the t dependence of the nuclear gluon distribution is known, one can also study the
t dependence of hard exclusive heavy vector meson production. Again, it is convenient
to present the results in terms of the ratio of the production on the nucleus and on the
nucleon, RVM(t):

RVM(t) ≡
dσγ∗

L
A→V A/dt

A2dσγ∗
LN→V N/dt

≈
dσγ∗

L
A→V A/dt

A2dσγ∗
LN→V N/dt(t = 0)

=

(

gA(x,Q2, t)

AgN(x,Q2)

)2

, (216)

where gA(x,Q2, t) = Hg
A(x, ξ = 0, t, Q2) given by Eq. (196). Note that in Eq. (216), we

neglected the weak t dependence of the nucleon gluon GPD compared to that of the
nucleus one and assumed that the entire t dependence comes from the gluon nuclear
GPD. The latter is a good approximation for heavy nuclei.

Figure 87 presents our predictions for the ratio RVM(t) of Eq. (216) for 208Pb as a function
of |t| at Q2 = 4 and 10 GeV2 and x = 10−3 and x = 5× 10−3. The shaded bands (barely
distinguishable at the given scale along the y-axis) span the predictions for the gluon
nuclear shadowing made using models FGS10 H and FGS10 L. One can see from Fig. 87
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factor > 2 shadowing effects for J/ψ for x< 10-2  
& for Υ for x< 10-4

The shaded bands reflect the theoretical uncertainty of our predictions.

Warning:          Nondiagonal effects require further studies
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Nuclear Diffractive parton densities

Nuclear diffractive pdfs were calculated  by Guzey et al 03 in the same approximations as 
LT nuclear pdf’s (quasieikonal)  and recently in the fluctuation approximation  (no model 
necessary for double rescattering). Difference between QE and fluctuation is the same as 
in inclusive case

Hard diffraction off nuclei: test of understanding of dynamics, importance of fluctuations, 
proximity to black disk limit, practical applications for ultraperipheral pA collisions

L. Frankfurt et al. / Physics Letters B 586 (2004) 41–52 43

which equals 0.1 for quarks and 0.03 for gluons. The effective cross section, σ
j
eff, is expressed through the nucleon

DPDFs as (see Ref. [12] for the detailed discussion and numerical estimates)

(2)σ
j
eff

(

x,Q2
0

)

= 16π

fj/N (x,Q2
0)(1+ η2)

xP,0
∫

x

dxP f
D(4)
j/N

(

β,Q2
0, xP, t

)

∣

∣

∣

∣

t=tmin

.

Eq. (1) serves to define the input nuclear PDFs at the initial scaleQ2
0,Q

2
0 = 4 GeV2 in our analysis. Nuclear PDFs

at larger scales Q2 are obtained using the NLO QCD evolution equations.

In Eq. (1), the interaction with two nucleons is calculated in a model-independent way. The only source of

model-dependence is due to the approximation of the interaction with three and more nucleons by the attenuation

factor

exp

{

−A

2
(1− iη)σ

j
eff

z2
∫

z1

dzρA(b, z)

}

,

which involves σ
j
eff, the rescattering cross section given by Eq. (2). While this quasi-eikonal approximation is

expected to be valid at Q2
0 = 4 GeV2, it becomes progressively worse with increasing Q2. The reason for this is

that the eikonal approximation conserves the number of bare particles and thus contradicts QCD evolution. As

a result, one obtains a wrong, higher twist, Q2-dependence of nuclear shadowing in the processes dominated by

small partonic configurations of the incoming virtual photon. Only at low Q2 scales, where the effects of QCD

evolution are not very important, can one justify the use of the eikonal and quasi-eikonal approximations. This

means that Eq. (1) should be used only at the initial scaleQ2
0 = 4 GeV2.

The generalization to the case of coherent diffraction in DIS on nuclei is rather straightforward, and it follows

closely the case of the vector meson diffraction, see e.g. [14]. The nuclear diffractive parton distribution of flavor

j can be presented in the form

f
D(3)
j/A

(

x,Q2
0, xP

)

= A2

4
16πf

D(4)
j/N
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)
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∫

d2b
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∞
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dz exp
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ixPmNz
}

exp

{

σ
j
eff

A

2
(1− iη)

∞
∫

z

dz′ ρA(b, z′)

}

ρA(b, z)

∣

∣

∣

∣

∣

2

.

The superscripts (3) and (4) denote the dependence on three and four variables, respectively.We present our Eq. (3)
for the t-integrated nuclear DPDFs since it is more compact and since it is not feasible to measure t in diffraction

off nuclei in the collider experiments. In deriving Eq. (3) we neglected a possible β-dependence of σ
j
eff(x,Q2) in

the exponential factor and substituted σ
j
eff by its average value. Since the total probability of diffraction changes

rather weakly with σ
j
eff, see e.g. [15], this seems a reasonable first approximation. At the same time, in the region

of small β and small x corresponding to the triple Pomeron kinematics for soft inelastic diffraction, we expect a

significant suppression of diffraction as compared to the quasi-eikonal approximation of Eq. (3) forQ2 ∼ Q2
0, see

the discussion in the end of the section.

One should note that the large momentum transfer Q2, which is necessary for the applicability of the QCD

factorization theorem, does not preclude the existence of coherent nuclear diffraction. Indeed, at high energies, the

minimal momentum transfer to the nucleus tmin is small, tmin ≈ x2BjM
2
A, which makes it possible for nucleus to stay

intact (or diffract into low mass excited states). In practice, in the collider kinematics coherent nuclear diffraction

cannot be identified by its distinctly sharp t-dependence in the forward direction (forward diffractive peak), which
originates from the factor (FA(t))2 where FA(t) is the nuclear form factor. Instead one has to use the zero angle

neutron calorimeter [16].
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Fig. 64. The probability of diffraction, P j
diff of Eq. (170), as a function of Bjorken x at Q2 = 4

GeV2. The solid and dotted curves correspond to models 1 and 2, respectively, for the multiple
rescattering for the case of diffraction with nuclei. For comparison, P j

diff for the proton is given
by the dot-dashed curves. The left panels correspond to the ū-quark channel; the right panels
correspond to the gluon channel. The upper row of panels is for 40Ca; the lower row is for 208Pb.

One can conclude from Fig. 64 that the A dependence of the probability of coherent
diffraction is rather weak for A ≥ 40. For these values of A, the interaction for the
central impact parameters is close to being completely absorptive (black) with a small
contribution from the opaque nuclear edge. Moreover, the A dependence is weaker in
the gluon case since the gluon interactions at Q2 = 4 GeV2 are closer to the black
limit. Mathematically this pattern is a result of the compensation of the stronger small
x nuclear shadowing in the case of coherent diffraction compared to the inclusive case by
the combinatoric factor proportional to A4/3.

It is also worth noting a qualitative difference between the A dependence of the fraction
of the diffractive events in the quark and gluon-induced processes at small x. In the gluon
case, it is a very weak function of A because already in the proton case, the probability of
diffraction is close to one half, the maximal value allowed by unitarity. At the same time,
in the quark case, a steady growth with A is predicted since for the proton the probability
of diffraction in this channel is rather small and, hence, the increase of the blackness of
the interaction with A leads to a gradual increase of the diffraction probability to the
values closer to the black body limit.
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One can conclude from Fig. 64 that the A dependence of the probability of coherent
diffraction is rather weak for A ≥ 40. For these values of A, the interaction for the
central impact parameters is close to being completely absorptive (black) with a small
contribution from the opaque nuclear edge. Moreover, the A dependence is weaker in
the gluon case since the gluon interactions at Q2 = 4 GeV2 are closer to the black
limit. Mathematically this pattern is a result of the compensation of the stronger small
x nuclear shadowing in the case of coherent diffraction compared to the inclusive case by
the combinatoric factor proportional to A4/3.

It is also worth noting a qualitative difference between the A dependence of the fraction
of the diffractive events in the quark and gluon-induced processes at small x. In the gluon
case, it is a very weak function of A because already in the proton case, the probability of
diffraction is close to one half, the maximal value allowed by unitarity. At the same time,
in the quark case, a steady growth with A is predicted since for the proton the probability
of diffraction in this channel is rather small and, hence, the increase of the blackness of
the interaction with A leads to a gradual increase of the diffraction probability to the
values closer to the black body limit.
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One can conclude from Fig. 64 that the A dependence of the probability of coherent
diffraction is rather weak for A ≥ 40. For these values of A, the interaction for the
central impact parameters is close to being completely absorptive (black) with a small
contribution from the opaque nuclear edge. Moreover, the A dependence is weaker in
the gluon case since the gluon interactions at Q2 = 4 GeV2 are closer to the black
limit. Mathematically this pattern is a result of the compensation of the stronger small
x nuclear shadowing in the case of coherent diffraction compared to the inclusive case by
the combinatoric factor proportional to A4/3.

It is also worth noting a qualitative difference between the A dependence of the fraction
of the diffractive events in the quark and gluon-induced processes at small x. In the gluon
case, it is a very weak function of A because already in the proton case, the probability of
diffraction is close to one half, the maximal value allowed by unitarity. At the same time,
in the quark case, a steady growth with A is predicted since for the proton the probability
of diffraction in this channel is rather small and, hence, the increase of the blackness of
the interaction with A leads to a gradual increase of the diffraction probability to the
values closer to the black body limit.
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j/N (β, Q2, xIP )] as a function of xIP at fixed β = 0.1 and

β = 0.5 and at Q2 = 4 GeV2. All curves correspond to the ū-quark parton distribution.
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at desired values of Q2, we take the ratio fD(3)
j/A /(AfD(3)

j/N ) which is presented in Fig. 67.

127

Q2= 4GeV2

Much larger sensitivity to higher order effects - color fluctuations - large diffraction up to very 
large Q - will be possible to check soon in ultraperipheral AA collisions at the LHC

xIP ,� dependences 
are also calculated
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Final non-diffractive states:  DGLAP

matching with 
DGLAP for quark 
fragmentation:

yA 0 ymax

ymax- ln[(<1/β> -1)Q2/μ2]

2 /y
max

[ µy 0 ]- ln(Q )
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ymax
2

A

/A

1

A

eN h+X

dy

dN

dN h+XeA

dy

Fig. 70. Sketch of the A dependence of the hadron multiplicity dN
dy for small x as a function of

the hadron rapidity.

shadowing is absent. For these events, multiple interactions are absent and they should
not contribute significantly to the processes where several nucleons of the nucleus are
wounded. Hence, though the fraction of the events with long-range correlations described
above should drop with Q2 similarly to the decrease of the overall shadowing effect, the
strength of the correlations in the events, where several nucleons are wounded, would
remain strong.

6.3 Hadron production at central rapidities

We discussed in Sec. 2.4 that the application of the AGK cutting rules allows one to write
the inelastic (non-diffractive) cross section as a sum of the positive cross sections with
exactly j nucleons involved in the inelastic interactions. In the approximation when the
fluctuations of the effective rescattering cross section σX are neglected, we obtain for the
probability of the interaction with j nucleons:

pj =
A!

(A−j)!j!

∫

d2b [x(b)]j [1 − x(b)]A−j

∫

d2b [1 − (1 − x(b))A]
, (175)

where x(b) = σinel
X TA(b); σinel

X is the non-diffractive component of σX , which is given by
Eq. (162).
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shadowing is absent. For these events, multiple interactions are absent and they should
not contribute significantly to the processes where several nucleons of the nucleus are
wounded. Hence, though the fraction of the events with long-range correlations described
above should drop with Q2 similarly to the decrease of the overall shadowing effect, the
strength of the correlations in the events, where several nucleons are wounded, would
remain strong.

6.3 Hadron production at central rapidities

We discussed in Sec. 2.4 that the application of the AGK cutting rules allows one to write
the inelastic (non-diffractive) cross section as a sum of the positive cross sections with
exactly j nucleons involved in the inelastic interactions. In the approximation when the
fluctuations of the effective rescattering cross section σX are neglected, we obtain for the
probability of the interaction with j nucleons:

pj =
A!

(A−j)!j!

∫

d2b [x(b)]j [1 − x(b)]A−j

∫

d2b [1 − (1 − x(b))A]
, (175)

where x(b) = σinel
X TA(b); σinel

X is the non-diffractive component of σX , which is given by
Eq. (162).
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Distribution over multiplicity at central rapidities - very sensitive to 
presence of interactions with many nucleons.
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6.3 Hadron production at central rapidities

We discussed in Sec. 2.4 that the application of the AGK cutting rules allows one to
write the inelastic (non-diffractive) cross section as a sum of the positive cross sections
with exactly j nucleons involved in the inelastic interactions, σj , see Eq. (28). In the
approximation when the fluctuations of the effective rescattering cross section σX are
neglected, the probability of the interaction with j nucleons is [111] [see Eq. (28)]:

pj ≡
σj

σhA,inel
summed

=
A!

(A−j)!j!

∫

d2b [x(b)]j [1 − x(b)]A−j

∫

d2b [1 − (1 − x(b))A]
, (176)

where x(b) = σinel
X TA(b); σinel

X is the non-diffractive component of σX , which is given by
Eq. (163); TA(b) is the nuclear optical density. To account for the fluctuations of σinel

X , one
would have to add the integral over σinel

X with the measure P (σinel
X ) both in the numerator

and denominator of Eq. (176). This would obviously lead to a broader distribution over
the number of ”wounded” nucleons (see below).

The average number of the ”wounded” nucleons, ν =
∑A

n=1 jpj, satisfies the relation which
is an example of so-called AGK cancellation [111],

ν ≡
A

∑

n=1

jpj =
Aσinel

X
∫

d2b [1 − (1 − x(b))A]
, (177)
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Fig. 72. The A dependence of multiplicity distributions. The ratio of the nucleus to proton
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n /Pn as a function of the number of the produced particles n for the fixed
pseudorapidity interval 1 ≤ η∗ ≤ 2, Q2 = 4 GeV2 and x ∼ 10−3.

Therefore, the probability to produce n particles in lepton-nucleus DIS, P A
n , can be intro-

duced by the following relation,

Gm(z) = [1 + r(1 − z)]−km ≡
∞
∑

n=0

P A
n (k′, 〈n′〉) zn , (181)

where k′ = mk and 〈n′〉 = m〈n〉. As follows from Eq. (181), the explicit expression for
P A

n is given by Eq. (178) after the replacement k → mk and 〈n〉 → m〈n〉.

In our numerical analysis, we neglected the fluctuations in the number of the nucleons
participating in the particle production and used m = ν, where ν is the average number
of the wounded nucleons given by Eq. (177). To evaluate ν, we used σinel

X = 24 mb [see
Eq. (163)], which corresponds σq

3 = 29 mb (the effective rescattering cross section in
the sea-quark channel, model 1) at Q2 = 4 GeV2 and x ∼ 10−3. This value of Bjorken
x approximately corresponds to the kinematics of the H1 analysis of Pn in the ep case
discussed above [202].

The results of the calculation of the A dependence of the multiplicity distributions for
events without rapidity gaps using Eqs. (176)-(181) are presented in Fig. 72. In this figure,
we plot the ratio of the nucleus to proton probabilities P A

n /Pn as a function of n. One
can see from Fig. 72 that a much broader distribution over multiplicity is predicted for
heavy nuclei. Measurements of such distributions would serve as a complementary (to the
measurement of the diffractive cross sections) probe of the dynamics of nuclear shadowing.

With an increase of Q2, the pattern of fluctuations in the number of collisions will become
more involved as the fluctuations of σinel

X should increase because of the mixing of the

137

The A dependence of multiplicity 
distributions. The ratio of the nucleus to 
proton probabilities PnA/Pn as a function 
of the number of the produced particles 
n for the fixed pseudorapidity interval 
1 ≤ η∗ ≤ 2, Q2 = 4 GeV2 and x ∼ 10−3.
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Fig. 90. A sketch of the ratio of the nuclear to free proton hadron multiplicities, ⌘A(y) = NA(y)/Np(y) as a function of the hadron rapidity.

smaller rapidities. The application of the Abramovsky–Gribov–Kancheli (AGK) rules [119] indicates that for y  ysoft partons �
�, where � = 2 � 3, the hadron multiplicity in the case of DIS off nuclei will be enhanced by the factor ⌘A(y):

⌘A(y) = AF2N(x,Q 2)

F2A(x,Q 2)
⌘ A

Aeff
. (221)

One should note that this estimate neglects the effects of the energy conservation and the increase ofmultiplicities at central
rapidities with an increase of W . In the case of deuteron–gold collisions, the observed increase of multiplicity is smaller
than that given by the AGK rules by a factor of 0.7, cf. the discussion in Ref. [236], which is in line with the account of
energy–momentum conservation.

At the rapidities close to the nuclear rapidities, a further increase of ⌘A(y) is possible because of the formation of hadrons
inside the nucleus. A sketch of the expected rapidity dependence of ⌘A(y) is presented in Fig. 90.

The discussed phenomenon should be more pronounced for collisions at central impact parameters leading to a
correlation between the number of particles produced in the nucleus fragmentation region and the depletion at the rapidities
given by Eq. (220).

With an increase of Q 2 at fixed x, an increasingly larger fraction of collisions occurs due to the scattering off the partons
that had large enough x at the initial Q 2 scale where nuclear shadowing is absent. For these events, multiple interactions
are absent and do not contribute significantly to the processes where several nucleons of the nucleus are wounded. Hence,
though the fraction of the eventswith long-range correlations described above should dropwithQ 2 similarly to the decrease
of the overall shadowing effect, the strength of the correlations in the events, where several nucleons are wounded, would
remain strong.

6.4. Hadron production at central rapidities

Wediscussed in Section 2.4 that the application of the AGK cutting rules allows one towrite the inelastic (non-diffractive)
cross section as a sum of the positive cross sections with exactly j nucleons involved in the inelastic interactions, �j,
see Eq. (28). In the approximation when the fluctuations of the effective rescattering cross section �X are neglected, the
probability of the interaction with j nucleons is [120] (see Eq. (28)):

pj ⌘ �j

� hA,inel
summed

=
A!

(A�j)!j!
R
d2b [x(b)]j[1 � x(b)]A�j

R
d2b [1 � (1 � x(b))A] , (222)

where x(b) = � inel
X TA(b); � inel

X is the non-diffractive component of �X , which is given by Eq. (180); TA(b) is the nuclear optical
density. To account for the fluctuations of � inel

X , one would have to add the integral over � inel
X with themeasure P(� inel

X ) both
in the numerator and denominator of Eq. (222). This would obviously lead to a broader distribution over the number of
‘‘wounded’’ nucleons (see below).

The average number of the ‘‘wounded’’ nucleons, ⌫ = PA
n=1 jpj, satisfies the relationwhich is an example of the so-called

AGK cancellation [120],

⌫ ⌘
AX

n=1

jpj = A� inel
XR

d2b [1 � (1 � x(b))A] , (223)

where the denominator has the meaning of the inelastic cross section for the interaction of the diffractive configuration,
� hA,inel
summed. Since the fraction of diffractive events (which also include the processes with the break-up of the nucleus) in eA

scattering is larger than in eN scattering, the number of wounded nucleons ⌫ is somewhat larger than the A�
� ⇤N
tot /�

� ⇤A
tot ratio.
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Impact factor Γ(b) for quark - antiquark dipole p and dipole -Pb scattering

Probability of inelastic interaction is
 Pin= |1-Γ(b)|2   ➙ Pin=3/4  

for Γ(b)=1/2

pt ⇡ 1.5GeV/c

pt ⇡ 0.75GeV/c

Update of Rogers et al 03

Gluon densities in nuclei and proton at b=0 are 
rather  similar.  Difference at  <b>  is ~30% larger

Where DGLAP approximation breaks & non-linear(black disk?) regime (BDR)  of strong absorption for configurations for 
small size configurations sets in. Note in the preQCD logic (Gribov 68) BDR for all configurations with M2/s< 1/2RAmN.

pt ⇡
⇡

2d
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Expectation for EIC I

LT should give a reasonable description for Q2 ≥ 3 GeV2

At lower Q2 - significant HT effects are possible mostly due to the small mass diffractive 
contributions (ρ,ω,...) - but these effects would be accounted for in the Gribov - Glauber 
model for σγ*A

Difficult to find a clean observable for onset of black disk regime. Our conclusion that the best tool is  

Post selection effect in BDR - effective fractional energy losses

“Parton Propagation” for pt  ≤ pt (BDR) 

The total differential multiplicity 
normalized to the up quark fragmentation 
function  as a function of z at Q2=2 GeV2.

Gross scaling violation in BDR as compared to DGLAP -
can compare peripheral and central collisions and look for suppression
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Conclusions

☺ Theory provides essentially model independent predictions for LT shadowing effects in a wide 
range of x. LT is significant   up to large virtualities for x<0.01.

☺ For small enough x and in a wide range of virtualities gluon shadowing remains larger than the 
quark shadowing.

☺ Future measurements of inclusive hard diffraction off nucleon at small t, nuclear shadowing and 
diffraction will provide stringent tests of the theory and allow to understand interplay of soft 
and hard dynamics. 

Transition from DGLAP region to black disk regime at x ~ 10-4, pt ~1÷1.5 GeV/c☺
Post-selection leads to fractional energy losses in and near BDR☺
RHIC  data on forward pion production in dAu collisions  are consistent with this 
scenario:  strong suppression of the production at central impact parameters. No 
suppression of recoil jets for forward - central case.

☺
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